博客
关于我
Spark ML算法简单了解 Kmeans
阅读量:645 次
发布时间:2019-03-14

本文共 752 字,大约阅读时间需要 2 分钟。

K-means 原理及应用

K-means 算法是无监督学习中广泛应用的聚类方法,因其简单高效而备受重视。本文将从基础原理、实现步骤、关键问题以及实际应用案例等方面进行详细介绍。

K-means 算法的基本思路是通过迭代优化找到数据中最优的簇中心。具体过程如下:

初始阶段,需选择K个初始聚类中心。选择随机点可能导致初始中心不佳,因此更推荐使用k-means++ 算法。该算法通过最大化两个聚类中心之间的距离来确保初始中心的代表性。

主算法过程包括:

  • 分配阶段:计算每个数据点到当前聚类中心的距离,将其分配到最近的聚类中。
  • 优化阶段:计算新聚类中心(通常为簇中各点坐标的平均值),如果聚类中心发生变化,重复上述步骤。
  • 阈值判断:若聚类中心变化小于设定阈值,或达到最大迭代次数,算法终止。
  • 典型案例展示:

    以K=2进行聚类,假设数据空间中有五个点。初始选择两个种子点,通过迭代优化,使其逐步收敛至最优聚类中心。最终形成两组数据点,使得簇心移动距离达到收敛标准。

    选择K值的关键分两层面:计算成本(如平方和)和实际效果评估。过低的K值可能导致信息过损,过高则可能聚类过分。需结合数据特性和业务需求找到最优值。

    数据预处理与应用示例

    预处理步骤主要包含:

  • 数据清洗:移除无效数据,处理缺失值。
  • 转换处理:使用Tokenizer分割文本,HashingTF提取特征,IDF计算重要性权重。
  • 特征标准化:为模型训练做准备。
  • 基于上述预处理流程,用户提供了一个Spark MLlib的K-means实例。在实际应用中,可以通过调整模型参数(如迭代次数和聚类数量)来达到最佳聚类效果。

    总之,K-means算法虽简单,却在数据挖掘和业务分析中发挥重要作用。理解其工作原理并掌握关键优化方法,对提升分析效率具有重要意义。

    转载地址:http://meblz.baihongyu.com/

    你可能感兴趣的文章
    node.js 怎么新建一个站点端口
    查看>>
    Node.js 文件系统的各种用法和常见场景
    查看>>
    Node.js 模块系统的原理、使用方式和一些常见的应用场景
    查看>>
    Node.js 的事件循环(Event Loop)详解
    查看>>
    node.js 简易聊天室
    查看>>
    Node.js 线程你理解的可能是错的
    查看>>
    Node.js 调用微信公众号 API 添加自定义菜单报错的解决方法
    查看>>
    node.js 配置首页打开页面
    查看>>
    node.js+react写的一个登录注册 demo测试
    查看>>
    Node.js中环境变量process.env详解
    查看>>
    Node.js之async_hooks
    查看>>
    Node.js初体验
    查看>>
    Node.js升级工具n
    查看>>
    Node.js卸载超详细步骤(附图文讲解)
    查看>>
    Node.js卸载超详细步骤(附图文讲解)
    查看>>
    Node.js基于Express框架搭建一个简单的注册登录Web功能
    查看>>
    node.js学习之npm 入门 —8.《怎样创建,发布,升级你的npm,node模块》
    查看>>
    Node.js安装与配置指南:轻松启航您的JavaScript服务器之旅
    查看>>
    Node.js安装及环境配置之Windows篇
    查看>>
    Node.js安装和入门 - 2行代码让你能够启动一个Server
    查看>>